Exercise 12

Differentiate both sides of the following equations:

$$
\sinh x+\ln (\sin x)=\int_{0}^{x}(3+x-t) u(t) d t, \quad 0<x<\frac{\pi}{2}
$$

Solution

Differentiating both sides of the equation with respect to x gives us

$$
\cosh x+\cot x=3 u(x) \cdot 1-(3+x) u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x}(3+x-t) u(t) d t
$$

where we used the Leibnitz rule to differentiate the integral. Therefore,

$$
\cosh x+\cot x=3 u(x)+\int_{0}^{x} u(t) d t, \quad 0<x<\frac{\pi}{2} .
$$

